skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Foschini, Luca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite increased interest in wearables as tools for detecting various health conditions, there are not as of yet any large public benchmarks for such mobile sensing data. The few datasets that are available do not contain data from more than dozens of individuals, do not contain high-resolution raw data or do not include dataloaders for easy integration into machine learning pipelines. Here, we present Homekit2020: the first large-scale public benchmark for time series classification of wearable sensor data. Our dataset contains over 14 million hours of minute-level multimodal Fitbit data, symptom reports, and ground-truth laboratory PCR influenza test results, along with an evaluation framework that mimics realistic model deployments and efficiently characterizes statistical uncertainty in model selection in the presence of extreme class imbalance. Furthermore, we implement and evaluate nine neural and non-neural time series classification models on our benchmark across 450 total training runs in order to establish state of the art performance. 
    more » « less
  2. The ability to objectively measure aspects of performance and behavior is a fundamental pillar of digital health, enabling digital wellness products, decentralized trial concepts, evidence generation, digital therapeutics, and more. Emerging multimodal technologies capable of measuring several modalities simultaneously and efforts to integrate inputs across several sources are further expanding the limits of what digital measures can assess. Experts from the field of digital health were convened as part of a multi-stakeholder workshop to examine the progress of multimodal digital measures in two key areas: detection of disease and the measurement of meaningful aspects of health relevant to the quality of life. Here we present a meeting report, summarizing key discussion points, relevant literature, and finally a vision for the immediate future, including how multimodal measures can provide value to stakeholders across drug development and care delivery, as well as three key areas where headway will need to be made if we are to continue to build on the encouraging progress so far: collaboration and data sharing, removal of barriers to data integration, and alignment around robust modular evaluation of new measurement capabilities. 
    more » « less